
1

Shortest Paths Revisited
Lecture 07.08 by Marina Barsky

Paths with costs

In a weighted graph, the cost of a path is the sum of the weights (costs) of the

edges along the path.

A path of cost 55 + 25 - 25 = 55.

A path from x to y is a minimum-cost path if it has the smallest cost among all

paths from x to y.

C

G

D

E

B

A

I

H

F

30

-25

10

5

60

15

1555

-50
20

10

30

10

-25

40

10

5 25

Single-source Minimum-Cost Paths
without negative edge weights

Recap:

Dijkstra Algorithm

Minimum Cost Paths: will simple greedy work?

w

u

s

t

1

4

2

3

4

Simply taking the smallest-weight edge does not work.

Dijkstra algorithm is the combination of greedy and iterative improvement

The straightforward greedy

approach: from each node on

the path, take the edge with the

smallest cost

Is 6 the cost of the minimum-

cost path from s to t ?

Storing the Minimum Cost

We store the minimum cost from the start node in a min_cost array.

● The minimum cost from the start node to x is min_cost[x].

● The start node s has min_cost[s] = 0.

Question: Will we ever need to change a min_cost value during the

algorithm?

Or will the value be set once and then never change?

There is a path of cost 20 from s to u.

There is a path of cost 10 from s to v.

v
10

s
0

u
20

Storing the Minimum Cost

We store the minimum cost from the start node in a min_cost array.

● The minimum cost from the start node to x is min_cost[x].

● The start node s has min_cost[s] = 0.

Question: Will we ever need to change a min_cost value during the

algorithm?

Or will the value be set once and then never change? The value can change

There is a path of cost 20 from s to u.

There is a path of cost 10 from s to v.

v
10

s
0

u
20

If there is another path from x to y3 that has lesser cost than this subpath,

then the original path from x to z was not minimum cost (could have been improved).

Property of Minimum-Cost Paths

Suppose that a minimum cost path from x to z goes through the nodes y1, y2, …, yk.

Notice that the subpath from x to yi is also a minimum cost path from x to yi for all i.

Therefore, if we want to build minimum cost paths, then we never want to extend a

path that is not itself minimum-cost.

● Don't add node to the solution until we know that we have a minimum cost path

to it.

● We need to keep track of the current minimum cost path to each node.

● We will compute the shortest path from 'source' node x to all other nodes y.

A minimum cost path from x to z. One of its subpaths is a path from x to the intermediate node y3.

x y1 y2 y3 y4 z

Dijkstra Algorithm: intuition

We maintain 2 sets of nodes:

Set X for nodes for which we already know the final cost of the min-cost

paths from S (Processed).

Set V-X of remaining nodes for which the min-cost path is yet to be found

(Unprocessed).

● We perform n iterations of the main loop:

● At each iteration we choose one node from V-X and add it to X

with its corresponding cost (and path if required).

● The node is chosen according to the minimum Dijkstra Greedy

Score (DGS).

● We store the current greedy score for vertex v in the min_cost

array

● We grow set X until all n vertices from V are added to X.

Dijkstra algorithm: illustration

● Originally, only the source vertex S is in X: the cost of the path S-S is 0.

● For paths from S to other nodes the cost is unknown, we mark them as ∞.

● At each step, there will be edges inside X, inside V-X, and the edges between the 2 sets.

● We are interested only in edges that “cross the border” - they will allow us to

improve the DGS for each remaining node

w

u

s

t

1

4

2

3

6

A[s]: 0

P[s]: s-s

Set X

Set V-X

A[u]: ∞

A[t]: ∞

A[w]: ∞

A is a min_cost array containing

DGS for each of n nodes

P is an array containing min-cost

paths from s to each of n nodes

Dijkstra algorithm: illustration

w

u

s

t

1

4

2

3

6

A[s]: 0

P[s]: s-s

Set X

Set V-X

A[u]: 1

P[u]: s-u

A[t]: ∞

A[w]: 4

P[w]: s-w

● The goal is to add more nodes to X.

● The only 2 edges extending already known min-cost path are (s,u) and (s,w).

● For both u and w, we update their DGS to the sum of A[s] + cost(s,u) and A[s] +

cost(s,w) respectively.

● This will be a new Dijkstra Greedy Score for these nodes.

Dijkstra algorithm: illustration

w

u

s

t

1

4

2

3

6

A[s]: 0

P[s]: s-s

Set X

Set V-X

A[u]: 1

P[u]: s-u

A[t]: ∞

A[w]: 4

P[w]: s-w

● Next, we select the vertex with the minimum DGS - vertex u - and add it to X

Dijkstra algorithm: illustration

w

u

s

t

1

4

2
3

6

A[s]: 0

P[s]: s-s

Set X

Set V-X

A[u]: 1

P[u]: s-u

A[t]: ∞

A[w]: 4

P[w]: s-w

● Now we have a new node u in X, and we know that s~>u is the next smallest

min-cost path from s

● There are 2 new edges out of u which cross the border between X and V-X

● They may help improve the DGS of remaining nodes

Dijkstra algorithm: illustration

w

u

s

t

1

4

2
3

6

A[s]: 0

P[s]: s-s

Set X

Set V-X

A[u]: 1

P[u]: s-u

A[t]: 7

P[t]: s-u-t

A[w]: 3

P[w]: s-u-w

● We check if we can update the DGS using A[u] + cost(u,t) and A[u]+cost(u,w)

Dijkstra algorithm: illustration

w

u

s

t

1

4

2

3

6

A[s]: 0

P[s]: s-s

Set X

Set V-X

A[u]: 1

P[u]: s-u

A[t]: 7

P[t]: s-u-t

A[w]: 3

P[w]: s-u-w

● Next we select the node with the smallest DGS and add it to X

Dijkstra algorithm: illustration

w

u

s

t

1

4

2
3

6

A[s]: 0

P[s]: s-s

Set X

Set V-X

A[u]: 1

P[u]: s-u

A[t]: 6

P[t]: s-u-w-t

A[w]: 3

P[w]: s-u-w

● The only new edge that can update DGS for t is (w,t).

● We check if the new score going through w is better, and update the final score

of t to A[w] + cost(w,t)

Dijkstra algorithm: illustration

w

u

s

t

1

4

2
3

6

A[s]: 0

P[s]: s-s

Set X

A[u]: 1

P[u]: s-u

A[t]: 6

P[t]: s-u-w-t

A[w]: 3

P[w]: s-u-w

● The last vertex is added to X

● At this point all min-cost paths from s to each other vertex have been computed

Dijkstra algorithm: the paths

w

u

s

t

1

4

2
3

6

A[s]: 0

P[s]: s-s

Set X

A[u]: 1

P[u]: s-u

A[t]: 6

P[t]: s-u-w-t

A[w]: 3

P[w]: s-u-w

• Do we really need to store the paths themselves?

• No, instead of storing the min path for each node, we could just record the parent

node when we update DGS, and we will be able to recover the shortest path from

any node to s

Dijkstra Algorithm: correctness

Intuitively: the algorithm is correct because we transfer the node v into set X by

extending the shortest paths from the nodes for which we already know that the paths

from s are optimal.

Proof by induction (sketch):

● Base case: A[s] = 0

● Inductive hypothesis:

for all v ∈ X, A[v] is the cost of the shortest path s~>v

● In each iteration:

We pick the vertex w ∉ X with the lowest DGS among all vertices ∉ X.

The path from s to w extends some shortest path s~>v for some v ∈ X.

We updated the DGS(w) with the lowest possible cost of extending any such path

● Then any alternative path from s to w which we did not explore yet must go

through some vertex z in V-X. But for any z, DGS(z) ≥ DGS(w), so any such path

will have the cost at least A[w] (not shorter).

● Hence, if we assume that each path from s to v ∈ X was a shortest path, the

extension of one of such paths will be a shortest path too.

A full formal correctness proof of Dijkstra’s algorithm can be found here

https://drive.google.com/file/d/1NDtkfYaT44hA-Meh5Tu0gZAxQj1Uu3Me/view?usp=sharing

Algorithm Dijkstra(G, start)

unprocessed: = empty set

min_cost:= empty dictionary

for each u in vertices of G

min_cost[u]: = ∞

unprocessed.add(u)

min_cost[start]: = 0

processed: = empty set

processed.add(start)

while unprocessed is not empty

v: = remove v with min_cost from unprocessed

processed.add(v)

for each edge (v,u)

if u in unprocessed:

min_cost[u]: = min(min_cost[u], min_cost[v] + wv,u)

Pseudocode

Naive Dijkstra Algorithm

Algorithm Dijkstra(G, start)

unprocessed: = empty set

min_cost:= empty dictionary

for each u in vertices of G

min_cost[u]: = ∞

unprocessed.add(u)

min_cost[start]: = 0

processed: = empty set

while unprocessed is not empty

v: = remove v with min_cost from unprocessed

processed.add(v)

for each edge (v,u)

if u in unprocessed:

min_cost[u]: = min(min_cost[u], min_cost[v] + wv,u)

Running time of Dijkstra's Algorithm

Loop is

executed

O(n) times
Search for

min in set of

size O(n)

Each node may have degree O(n) -

but total O(m) edges to process

The running time: n*n + m = O(n2)

Recap: Min-Priority Queue

A min-priority queue is an ADT for fast retrieval of min element.

Implementations: binary heap, balanced BST, Fibonacci heap (retirieval in time

O(1) but large constants).

For Dijkstra Priority Queue ADT should be enhanced with the update* operation.

*The update operation decreases the associated value of a given item.

In other words, it increases its priority.

We can keep pointers to each queue node to locate it quickly.

However if the priority of the heap node changed, we need then rebalance the

heap

Priority queue

enqueue O(log n)-time

dequeue O(log n)-time

update O(log n)-time

Dijkstra's Algorithm with Priority Queue

The min_cost priority queue (min_pq) stores tuples (node, DGS)

prioritized by DGS.

Algorithm Dijkstra Improved(G, start)

min_pq:= empty priority queue

for each u in vertices of G

min_pq.enqueue((u,∞))

processed: = empty set

min_pq.update((start, 0))

while min_pq is not empty

(cost_v, v): = min_pq.dequeue()

processed.add(v, cost_v)

for each edge (v,u):

if u in min_pq: # we have pointer to each node in the extended priority queue

cost_u:= min_pq.get(u).cost

if cost_v + wv,u < cost_u:

min_pq.update(u, cost_v + wv,u)

Dijkstra's with Priority Queue: running time

Algorithm Dijkstra Improved(G, start)

min_pq:= empty priority queue

for each u in vertices of G

min_pq.enqueue((u,∞))

processed: = empty set

min_pq.update((start, 0))

while min_pq is not empty

(cost_v, v): = min_pq.dequeue()

processed.add(v, cost_v)

for each edge (v,u):

if u in min_pq:

cost_u:= min_pq.get(u).cost

if cost_v + wv,u < cost_u:

min_pq.update(u, cost_v + wv,u)

Quickly finds u in

min_pq, and

updates only if

new DGS is

better: rebalance

in time O(log n)

Each dequeue in time log n

In sum O(m) edges to process

Running time O(n log n) + O(m log n) = O(m log n)

Loop is

executed

O(n) times

Dijkstra Algorithm: running time

Running time with Priority Queue: O(m log n)

● If m = O(n) [sparse graphs], then running time O(n log n)

● If m = O(n2) [dense graphs], then running time is O(n2 log n)

Dijkstra Algorithm: non-negative weights

● The algorithm combines ideas from both greedy and iterative improvement

techniques

● It iteratively improves DGS of each node until no more improvement is

possible and at this point the node is transferred into a processed set X

● However if edges are allowed to have a negative cost, then some of them

could potentially improve the DGS of already processed nodes (including the

source node s!)

● Then we would never have the processed set to start with

● Therefore this algorithm is not applicable for graphs with negative edge

weights

Single-Source shortest paths with

positive and negative edge costs

Bellman-Ford Algorithm

Dynamic Programming

Negative edge costs

It is probably hard to imagine the cases in physical world when the costs of

edges are negative: think of a network of roads

However graphs model many different problems

In decision problems modeled with graphs we can easily get negative costs

(penalties) and positive costs (rewards)

The problem then is to find the shortest (min-cost) path that minimizes

overall penalties – to make the best possible sequence of decisions

Example of a graph with negative edge weights

1USD

1Yen

1Euro

1RUB

131

1.5

109

1.5

74

0.008

0.7

0.009

0.013

0.7

Prices for buying and selling currencies.

These are conversion rates

Goal: find the best way to convert from RUB to EURO

Note that we need to multiply here

Example of a graph with negative edge weights

1USD

1Yen

1Euro

1RUB

2

0.17

2.1

0.17

1.87

-2.1

-0.15

-2.2

-1.89

-0.15

To reduce the problem to the shortest path problem:

Represent weights as logs of conversion rates

Now the product will become a sum, and we can compute the shortest path.

However some weights are negative!

Example of a graph with negative edge weights

1USD

1Yen

1Euro

1RUB

2

0.17

2.1

0.17

1.87

-2.1

-0.15

-2.2

-1.89

-0.15

What is the best path from RUB to EUR?

0.17 - 2.1 = -1.93

Example of a graph with negative edge weights

1USD

1Yen

1Euro

1RUB

2

0.17

2.1

0.17

1.87

-2.1

-0.15

-2.2

-1.89

-0.15

What is the best path from RUB to EUR?

0.17 - 2.1 = -1.93

-1.89 + 0.17 = -1.72

Example of a graph with negative edge weights

1USD

1Yen

1Euro

1RUB

2

0.17

2.1

0.17

1.87

-2.1

-0.15

-2.2

-1.89

-0.15

What is the best path from RUB to EUR?

0.17 - 2.1 = -1.93

-1.89 + 0.17 = -1.72

0.17 - 2.2 + 0.17 = -1.86

Example of a graph with negative edge weights

1USD

1Yen

1Euro

1RUB

2

0.17

2.1

0.17

1.87

-2.1

-0.15

-2.2

-1.89

-0.15

What is the best path from RUB to EUR?

0.17 - 2.1 = -1.93

-1.89 + 0.17 = -1.72

0.17 - 2.2 + 0.17 = -1.86

-1.89 + 2.1 - 2.1 = -1.89

Example of a graph with negative edge weights

1USD

1Yen

1Euro

1RUB

2

0.17

2.1

0.17

1.87

-2.1

-0.15

-2.2

-1.89

-0.15

The min-cost path:

0.17 - 2.1 = -1.93

-1.89 + 0.17 = -1.72

0.17 - 2.2 + 0.17 = -1.86

-1.89 + 2.1 - 2.1 = -1.89

Luckily we have only 4 nodes:

Dijkstra does not work here!

Use Bellman-Ford

Negative edge costs: problem!

● If we allow some weights be negative, we facing the problem of a negative

cycle: a cycle with the total cost < 0

● All shortest-path algorithms based on iterative improvement will fail here,

because the cost of a path can be improved indefinitely!

● We may think of limiting the search to paths that avoid traversing cycles, but

that leads to even bigger problem:

○ If we do not allow paths to use cycles, we are asking for something which

is called a simple path: a path that repeats no vertex.

○ This is nothing else but a Hamiltonian Path – and no efficient algorithm is

known for computing it

v

s

2

-1

-4

-2

1

The cost of path s~>v can be improved indefinitely!

Negative-weight cycles

● If the graph contains a negative cycle, then all the shortest paths produced by

any of the shortest paths algorithms are unreliable (may be not the shortest)

● Thus we either believe that our input graph does not contain negative-weight

cycles, or we ask the algorithm to at least inform us if such cycle is present

● For the same reason, while working with negative-edge weights we cannot

really work with undirected graphs: each negative-cost edge can be

considered as a negative-weight cycle of 2 nodes

v

s

2

1

4

-2

1

We cannot work with undirected graphs with negative edge costs

Quiz: how many edges in any shortest path?

● Total number of edges:

A. At most n

B. At most n-1

C. At most n+1

D. At most n2

25

s 5

-15

5

10

5

10

20

15

-25

20

10

Given directed graph

G=(V,E) without negative

cost cycles, what is the

maximum number of edges

in a shortest path u~>v?

Quiz: how many edges in any shortest path?

● Total number of edges:

A. At most n

B. At most n-1

C. At most n+1

D. At most n2

25

s 5

-15

5

10

5

10

20

15

-25

20

10

Given directed graph

G=(V,E) without negative

cost cycles, what is the

maximum number of edges

in a shortest path u~>v?

A shortest path from s to v would contain in total no more that n vertices and

n-1 edges, because the paths would not contain cycles: the only cycles that

could improve the path cost are negative-weight cycles, and they are not

allowed

General Single-Source Shortest Paths problem

Input: directed graph G=(V,E), array C of edge costs [possibly

negative], source vertex s

Output: if G has no negative-weight cycles, then for every vertex v

∈ V, shortest path s~>v

Recap: when to use Dynamic Programming

❏ There is a “natural” ordering of subproblems from smallest to

largest such that you can obtain the solution for a subproblem by

only looking at smaller subproblems.

❏ It is easy to decide which subproblem is smaller when the input is a

sequence: array (knapsack items) or strings (edit distance)

❏ It is much harder to imagine a “natural” ordering of subproblems on

graphs: they have no order on vertices or edges

❏ If we do not have a “natural” ordering we need to impose an

artificial ordering: this is the main step in designing DP algorithms

on graphs

Order of subproblems

● We will exploit the sequential nature of a path: if a path is optimal, then every

subpath must also be optimal

● Issue: not clear how to define smaller and larger subproblems

● Key idea: artificially restrict the number of edges in the path

● Subproblems are ordered by the number of edges allowed

v

s

2

1

1

2

1

Example of subproblems:

The shortest path s~>v with

edge budget = 2 has cost 4

The shortest path s~>v with

edge budget = 3 has cost 3

First subproblem is smaller

than the second and is

solved first

Optimal subproblems

Let P(v,k-1) be the cost of shortest path from the source vertex s to v using at most k-1

edges

We increase the edge budget by allowing one more edge and want to compute P(v, k)

What are possible choices?

● For each incoming edge (u,v) we extend all (already computed) paths P(u, k-1) by edge

(u,v)

● If adding any of these edges to paths P(u, k-1) does not result in a shorter path: then

P(v, k) = P(v, k-1) [we keep previous shortest path]

● Otherwise we get a shorter path using one of the incoming (u,v) edges:

P(v,k) = P(u, k-1) + cuv

For each vertex v we need to consider at most 1 + in-degree(v) candidate paths with the

edge budget <= k

v

s
u

2

1 1

2

1

P(u,2) = 2

P(v,2) = 4

P(u,2)+1<4

P(v,3) = 3

Recurrence relation

● Let P(v,k) be the cost of the shortest path s~>v with the total budget k of

allowed edges [path s~>v contains ≤ k edges]

Base case: k=0 [0 edges allowed]

0 if v=s

∞ if v ≠ s
P(v,0) =

Recurrence relation

● Let P(v,k) be the cost of the shortest path s~>v with the total budget k of

allowed edges [path s~>v contains ≤ k edges]

Base case: k=0 [0 edges allowed]

0 if v=s

∞ if v ≠ s

Recurrence: 0 < k ≤ n-1

P(v, k-1)

min (P(u, k-1) + cuv)

P(v,0) =

P(v,k) = min

over all edges(u,v)

Max number of edges n-1

Algorithm BellmanFord(digraph G=(V, E), edge costs C)

A: = nxn 2D array indexed by k and v

base case

A[0, s] := 0

for each v ∈ V:

A[0, v] := ∞

DP table

for k from 1 to n-1:

for each v ∈ V:

A[k,v]:= A[k-1][v]

for each edge (u, v): # check all incoming edges of v

if A[k-1][u] + C[u,v] < A[k,v]:

A[k,v]: = A[k-1][u] + C[u,v]

return A[n-1] # the last row contains final shortest paths from s

Pseudocode

Bellman-Ford: illustration

● k=0 [zero edges allowed]

X
T

V

S

W

2

4

2

4

1 2

k S T V W X

0 0 ∞ ∞ ∞ ∞

1

2

3

4

0
∞ ∞

∞ ∞

Bellman-Ford: illustration

● k=1 [shortest paths with 1 edge]

X
T

V

S

W

2

4

2

4

1 2

k S T V W X

0 0 ∞ ∞ ∞ ∞

1 0 ∞ 2 ∞ 4

2

3

4

0
∞ ∞

∞ ∞

0
∞

∞

4

2

Bellman-Ford: illustration

● k=2

X
T

V

S

W

2

4

2

4

1 2

k S T V W X

0 0 ∞ ∞ ∞ ∞

1 0 ∞ 2 ∞ 4

2 0 8 2 4 3

3

4

0
∞ ∞

∞ ∞

0
∞

∞2

0

4
8

2 4

3

Bellman-Ford: illustration

● k=3

X
T

V

S

W

2

4

2

4

1 2

i S T V W X

0 0 ∞ ∞ ∞ ∞

1 0 ∞ 2 ∞ 4

2 0 8 2 4 3

3 0 6 2 4 3

4

0
∞ ∞

∞ ∞

0
∞

∞2

0

4
8

2 4

3

0 3
6

42

Bellman-Ford: illustration

● k=4

X
T

V

S

W

2

4

2

4

1 2

i S T V W X

0 0 ∞ ∞ ∞ ∞

1 0 ∞ 2 ∞ 4

2 0 8 2 4 3

3 0 6 2 4 3

4 0 6 2 4 3

0
∞ ∞

∞ ∞

0
∞

∞2

0

4
8

2 4

3

0 3
6

42

A: = nxn 2D array indexed by k and v

base case

A[0, s] := 0

for each v ∈ V:

A[0, v] := ∞

DP table

for k from 1 to n-1:

for each v ∈ V:

A[k,v]:= A[k-1][v]

for each edge (u, v): # check all incoming edges of v

if A[k-1][u] + C[u,v] < A[k,v]:

A[k,v]: = A[k-1][u] + C[u,v]

return A[n-1] # the last row contains final shortest paths from s

Algorithm BellmanFord(digraph G=(V, E), edge costs C)

Running Time

Loop is

executed

n times
At each iteration – total

O(m) edges are checked

for all the subproblems at

iteration k

Sum(in-degree(V)) = O(m)

Running time: O(nm)

Bellman-Ford algorithm: notes

● Early stopping:

○ We can run less than n-1 iterations

○ If there is no improvements between iteration k-1 and iteration k, then the

algorithm computed all shortest paths

● Detecting negative-weight cycles:

○ If algorithm continues until iteration n-1, then we run one more iteration

○ If we have improvements in iteration n, then G contains a negative-cost cycle

○ Conclusion: all the shortest paths are unreliable

● Space improvement:

○ We can reconstruct the shortest paths by a regular traceback: but this requires to

store all n2 cells of the DP table

○ However due to sequential nature of a path and the fact that each subpath of the

optimal path is by itself optimal – we just need to store the predecessor node for

each destination vertex v: when the path gets improved, we store the source node

u which caused this improvement

○ Because the subpath s~>u is by itself optimal, we can continue recovering the

path by looking at predecessor of u etc., until we reach node s.

Appendix: full step-by-step example of

Dijkstra’s algorithm

For those of you who forgot how the algorithm works

Dijkstra's Algorithm: full example

Find all minimum cost paths from the source node C.

25

C

D

E

B

A

F

5

5
5

10

5

10

20

15

25

20

G

10

Dijkstra's Algorithm: full example

25

C

D

E

B

A

F

5

5
5

10

5

10

20

15

25

20

G

10

To

vi

Shortest

path

C C-C: 0

DGS

A ∞

B ∞

D ∞

E ∞

F ∞

G ∞

Known

shortest paths

from C

Remaining nodes

with their Dijkstra

Greedy Score

We start by assigning Dijkstra Greedy Score (DGS)

to each node as ∞

The only known min-cost path is C-C of length 0.

We know that it cannot be improved so we add it to

the Processed nodes (green)

Dijkstra's Algorithm: full example

25

C

D

E

B

A

F

5

5
5

10

5

10

20

15

25

20

G

10

To

vi

Shortest

path

C C-C: 0

DGS

A 5

B 20

D 10

E 15

F 25

G ∞

Update DGS for all nodes adjacent to C.

Improve their DGS using edges that cross Processed

and Unprocessed sets.

Known

shortest paths

from C

Remaining nodes

with their Dijkstra

Greedy Score

Dijkstra's Algorithm: full example

25

C

D

E

B

A

F

5

5
5

10

5

10

20

15

25

20

G

10

To

vi

Shortest

path

C C-C: 0

DGS

Ac-a 5

Bc-b 20

Dc-d 10

Ec-e 15

Fc-f 25

G ∞Select the node with min DGS and add it to known min-

cost paths.

Known

shortest paths

from C

Remaining nodes

with their Dijkstra

Greedy Score

Dijkstra's Algorithm: full example

25

C

D

E

B

A

F

5

5
5

10

5

10

20

15

25

20

G

10

To

vi

Shortest

path

C C-C: 0

A C-A: 5

DGS

Bc-a-b 20 15

Dc-d 10

Ec-e 15

Fc-f 25

G ∞

Update DGS for every node v adjacent to A: cost of

path(C-A) + cost of edge(A,v)

Select the node with min DGS and add it to

Processed

Known

shortest paths

from C

Remaining nodes

with their Dijkstra

Greedy Score

Dijkstra's Algorithm: full example

25

C

D

E

B

A

F

5

5
5

10

5

10

20

15

25

20

G

10

To

vi

Shortest

path

C C-C: 0

A C-A: 5

D C-D:10

DGS

Bc-a-b 15

Ec-e 15

Fc-f 25

G ∞

Select the node with min DGS and add it to known min-

cost paths.

Known

shortest paths

from C

Remaining nodes

with their Dijkstra

Greedy Score

Dijkstra's Algorithm: full example

25

C

D

E

B

A

F

5

5
5

10

5

10

20

15

25

20

G

10

To

vi

Shortest

path

C C-C: 0

A C-A: 5

D C-D:10

B C-A-B:15

DGS

Ec-e 15

Fc-f 25

G ∞

Update DGS for all unprocessed nodes v adjacent

to B: cost of min path(C-B) + cost (B,v)

Select the node with min DGS and add it to known

min-cost paths

Known

shortest paths

from C

Remaining nodes

with their Dijkstra

Greedy Score

Dijkstra's Algorithm: full example

25

C

D

E

B

A

F

5

5
5

10

5

10

20

15

25

20

G

10

T

o

vi

Shortest path

C C-C: 0

A C-A: 5

D C-D:10

B C-A-B:15

E C-E: 15

DGS

Fc-e-f 25 20

Gc-e-g 40

Update DGS for all unprocessed nodes v adjacent to

E

Select the node with min DGS and add it to known

min-cost paths

Known

shortest paths

from C

Remaining nodes

with their Dijkstra

Greedy Score

Dijkstra's Algorithm: full example

25

C

D

E

B

A

F

5

5
5

10

5

10

20

15

25

20

G

10

To

vi

Shortest

path

C C-C: 0

A C-A: 5

D C-A-D:10

B C-A-B:15

E C-E: 15

F C-E-F: 20

DGS

Gc-e-f-g 40

30

Update DGS for all unprocessed nodes v adjacent to F:

len(C-F) + len(F,v).

This is the last node - mark it as processed.

Known

shortest paths

from C

Remaining nodes

with their Dijkstra

Greedy Score

Dijkstra's Algorithm: full example

25

C

D

E

B

A

F

5

5
5

10

5

10

20

15

25

20

G

10

To vi Shortest path

C C-C: 0

A C-A: 5

D C-D:10

B C-A-B:15

E C-E: 15

F C-E-F: 20

C C-E-F-G:30

All shortest paths

from C

All min-cost paths from C to any other node have

been computed.

Traceback

Of course, instead of storing the min path for each node, we could just store the

cost of the path and the link to the parent node when we update DGS, and we will

be able to find the shortest path from any node to C

25

0

10

15

15

5

20

5

5
5

10

5

10

20

15

25

20

30

10

